TABLE OF CONTENTS

Section	<u>Page</u>
1. INTRODUCTION	1—1
2. PROCESS DESCRIPTION	2—1
2.1 SUMMARY OF PERMITTING HISTORY	2—1
2.1.1 CT-234A, CT-234A2, and OP-154	2—3
2.1.2 CT-643A, and OP-181	2—4
2.1.3 MD-117 and OP-257	2—5
2.1.4 MD-132 and OP-258	2—6
2.1.5 CT-946	2—6
2.1.6 MD-229	2—8
2.1.7 MD-282	2—9
2.2 EXISTING FACILITY	2—9
2.2.1 Existing Soda Ash Production Plant	2—9
2.2.2 Alkaten® Production Plant	2—11
2.2.3 Caustic/Sulfite Plant.	2—11
2.2.4 Bagging Facility	2—12
2.3 SODA ASH EXPANSION	2—12
2.4 SODA ASH EXPANSION CONSTRUCTION AND OPERATION SCHEDULE	2—13
2.5 REGULATORY REQUIREMENTS	2—14
3. EMISSIONS INVENTORY	3—1
3.1 EXISTING FACILITY WITH PROPOSED MODIFICATIONS	3—2
3.1.1 Air Toxics Emissions	3—2
3.1.2 Basis of Source Emissions Estimates	3—8
3.2 BACKGROUND SOURCES	3—21
3.3 NEW SOURCE PERFORMANCE STANDARD APPLICABILITY	3—22
3.4 ASSESSMENT OF BEST AVAILABLE CONTROL TECHNOLOGY (BACT)	3—23
3.4.1 Particulate Matter	3—24

Section	<u>Page</u>
3.4.2 Nitrogen Oxides (NO _X)	3—29
3.4.3 Volatile Organic Compounds (VOCs) including Hazardous Air Pollutants (HAPs)	3—33
3.4.4 Carbon Monoxide (CO).	3—45
3.4.5 Other Pollutants	3—47
4. EXISTING ENVIRONMENT	4—1
4.1 TOPOGRAPHY	4—1
4.2 AIR QUALITY	4—1
4.3 CLIMATE AND SITE METEOROLOGY	4—4
4.4 SOILS AND VEGETATION	4—6
5. IMPACT ASSESSMENT APPROACH	5—1
5.1 AIR QUALITY MODELING	
5.1.1 Criteria Pollutant Analysis	
5.1.2 HAPs Analysis	5—8
5.2 METEOROLOGICAL DATA	5—11
5.3 SOURCE CHARACTERISTICS	5—11
5.3.1 Stack Parameters	5—11
5.3.2 Good Engineering Practice Stack Height Analysis	5—16
5.4 RECEPTOR SELECTION	5—20
5.5 AIR QUALITY RELATED VALUES	5—20
5.5.1 Plume Visibility	5—20
5.5.2 Regional Haze	5—21
5.5.3 Acid Deposition	5—21
6. RESULTS	6—1
6.1 IMPACTS DUE TO EXPANSION	6—1
6.2 AAOS COMPLIANCE ASSESSMENT	6—4

TABLE OF CONTENTS

Section	<u>Page</u>
6.3 PSD INCREMENT ANALYSIS	6—6
6.4 HAPS	6—7
6.5 PLUME VISIBILITY	6—10
6.6 REGIONAL HAZE	6—11
6.7 ACID DEPOSITION	6_11

Section	<u>Page</u>
TABLE 2-1: SUMMARY OF PERMIT HISTORY	2—1
TABLE 2-2: MD-229 PSD EMISSIONS	2—8
TABLE 2-3: MD-282 PSD EMISSIONS AND NETTING	2—9
TABLE 2-4: SIGNIFICANT EMISSION RATES	2—15
TABLE 3-1: PSD NET EMISSIONS CHANGES	3—2
TABLE 3-2: EPA METHOD 0010 SEMI-VOLATILE ORGANIC HAPS	3—5
TABLE 3-3: EPA METHOD 0011 ALDEHYDES AND KETONES	3—6
TABLE 3-4: EPA METHOD 18 HAPS	3—7
TABLE 3-5: MINE VENT EXHAUST HAP EMISSIONS	3—8
TABLE 3-6: BASIS OF EMISSION RATES FOR EXPANSION SOURCES	3—9
TABLE 3-7: BASIS OF EMISSION RATES FOR MODIFIED SOURCES	3—10
TABLE 3-8: AQD #80 CO EMISSIONS	3—13
TABLE 3-9: AQD #80 VOC EMISSIONS	3—13
TABLE 3-10: AP-42 EMISSION FACTORS FOR AQD #82	3—15
TABLE 3-11: AP-42 EMISSION FACTORS FOR AQD #85	3—16
TABLE 3-12: MODIFIED EXISTING PARTICULATE EMISSION LIMITS	3—19
TABLE 3-13: EMISSION RATES OF ALL SOURCES	3—20
TABLE 3-15: COST EFFECTIVENESS OF FLARE	3—37
TABLE 4-1: MAXIMUM MEASURED POLLUTANT CONCENTRATIONS	4—2
TABLE 4-2: NATIONAL AND WYOMING AMBIENT AIR QUALITY STANDARDS	4—3
TABLE 4-3: AVERAGE PRECIPITATION - GREEN RIVER, WYOMING	4—5
TABLE 4-4: AVERAGE TEMPERATURE FOR THE ROCK SPRINGS. WYOMING AIRPORT	·4—6
TABLE 5-1: AIR QUALITY MODELING CRITERIA	5—4
TABLE 5-2: PM ₁₀ BACKGROUND MONITORED DATA	5—7
TABLE 5-3: NATICH LOWEST ALLOWABLE AMBIENT HAP LEVELS	5—9
TABLE 5-4: NATICH HIGHEST ALLOWABLE AMBIENT HAP LEVELS	5—10
TABLE 5-5: STACK PARAMETERS	5—12
TABLE 5-6: EMISSION RATES (POUNDS PER HOUR)	5—14
TABLE 5-7: PRELIMINARY GEP ANALYSIS	5—18
TABLE 5-8: LAKES CONSIDERED IN ACID DEPOSITION ANALYSIS	5—22
TABLE 6-1: MAXIMUM IMPACTS FROM EMISSIONS DUE TO EXPANSION	6—2
TABLE 6-2: NAAQS/WAAQS COMPLIANCE DEMONSTRATION	6—5
TABLE 6-3: CLASS I PSD INCREMENT ANALYSIS	6—6
TABLE 6-4: SUMMARY OF HAP MODELING - FIVE YEAR MAXIMUM IMPACT	6—8
TABLE 6-5: SUMMARY OF HAP MODELING - STATUS	69
TABLE 6-6: CALCULATED RISK	6—10

TABLE OF TABLES

Section	<u>Page</u>	
TABLE 6-7: SUMMARY OF MAXIMUM ACID DEPOSITION RESULTS		6—13

TABLE OF FIGURES

SECTION 2

Figure 2-1Project Location Map	
SECTION 3	
Figure 000-PF-131 Primary Screening & Storage Process Flow Diagram	
Figure 000-PF-132A Conveying, Crushing & Storage Process Flow Diagram	
Figure 000-PF-133BCalcining Process Flow Diagram	
Figure 000-PF-133CCalcining Process Flow Diagram	
Figure 000-PF-134 Leaching & Thickening Process Flow Diagram	
Figure 000-PF-134A Leaching & Thickening Process Flow Diagram	
Figure 000-PF-134B Leaching & Thickening Process Flow Diagram	
Figure 000-PF-135 Primary Filtration Process Flow Diagram	
Figure 000-PF-135B Primary and Secondary Filtration Process Flow Diagram	
Figure 000-PF-136 Secondary Filtration Process Flow Diagram	
Figure 000-PF-138B . Mechanical Recompression Crystallizing Process Flow Diagram	
Figure 000-PF-138C . Mechanical Recompression Crystallizing Process Flow Diagram	
Figure 000-PF-139Weak Liquor and Process Water Tanks Process Flow Diagram	
Figure 000-PF-139A Weak Liquor and Process Water Tanks Process Flow Diagram	
Figure 000-PF-140B Centrifuge & Purge Recovery Process Flow Diagram	
Figure 000-PF-140D Centrifuge & Purge Recovery Process Flow Diagram	

TABLE OF FIGURES (Continued)

Product Drying, Sizing & Loadout Process Flow Diagram	Figure 000-PF-141B
Product Drying, Sizing & Loadout Process Flow Diagram	Figure 000-PF-141C
Product Drying, Sizing & Loadout Process Flow Diagram	Figure 000-PF-141D
Fines Recovery Process Flow Diagram	Figure 000-PF-142B
	Figure 000-PF-143
Air Quality Sources Plot Plan	Figure AQ-300
	SECTION 6
Dispersion Modeling Result PM ₁₀ - Annual Average	Figure 6-1
Dispersion Modeling Result PM ₁₀ - 24 HR. Average	Figure 6-2

TABLE OF ACRONYMS

μg	micrograms
AALs	Allowable Ambient Levels
AAQS	Ambient Air Quality Standards
ANC	Acid Neutralizing Capacity
AQD	Air Quality Division
AQRVs	Air Quality Related Values
BACT	Best Available Control Technology
BPIP	Building Profile Input Program
CAA	Clean Air Act
CaO	
CFR	Code of Federal Regulations
CO	
CT	
EPA	United States Environmental Protection Agency
ESP	Electrostatic Precipitator
GEP	Good Engineering Practice
gr/dscf	grains per dry standard cubic foot
- HAP	Hazardous Air Pollutant
HSH	High/Second High
ISC3	Industrial Source Complex Model - Version 3
ISCST3	Industrial Source Complex Short Term Model - Version 3
	Interagency Workgroup on Air Quality Modeling
K	Degrees Kelvin
	Lowest Achievable Emission Rates
	pounds per million British Thermal Units
	million tons per year
	Sodium Carbonate (Soda Ash)
	Sodium Sulfite (Sulfite)
– 2 – 3	

TABLE OF ACRONYMS

National Ambient Air Quality Standa	NAAQS
National Air Toxics Information Clearinghor	NATICH
Sodium Hydroxide (Caustic So	NaOH
Nitrogen Oxid	NO _x
New Source Performance Stand	NSPS
Particulate Matter less than 10 Micromet	PM₁0
pounds per h	PPH
Prevention of Significant Deteriorat	PSD
Standard Deviat	SD
Significant Impact Lev	SILs
Solvay Soda Ash Joint Vent	SSAJV
Standard Deviat	Std Dev
Southwest Wyoming Technical Air For	SWWTAF
Urban Airshed Mo	JAM
Universal Transect Merid	JTM
Volatile Organic Compoui	VOC
Wyoming Ambient Air Quality Standa	WAAQS
Wyoming Air Quality Standards and Regulation	WAQS&R
Wyoming Department of Environmental Qua	WDEQ

TABLE OF CAS NUMBERS

Compound	CAS#
ACETALDEHYDE	75-07-0
ACETONE	67-64-1
ACETOPHENONE	98-86-2
ACROLEIN	107-02-8
ACRYLONITRILE	107-13-1
BENZENE	71-43-2
BIPHENYL	92-52-4
BIS(2-ETHYLHEXYL)PHTHALATE	117-81-7
1,3 BUTADIENE	106-99-0
2-BUTANONE (METHYL ETHYL KETONE)	78-93-3
2-CHLOROACETOPHENONE	532-27-4
CUMENE	98-82-8
DIBENZOFURAN	132-64-9
DI-N-BUTYL PHTHALATE	84-74-2
ETHYL BENZENE	100-41-4
FORMALDEHYDE	50-00-0
HEXANE	110-54-3
METHYLENE CHLORIDE	75-09-2
3/4-METHYLPHENOL	108-39-4/106-44-5
N,N-DIMETHYLANILINE	121-69-7
NAPHTHALENE	91-20-3
PHENOL	108-95-2
PROPIONALDEHYDE	123-38-6
STYRENE	100-42-5
TOLUENE	108-88-3
1,1,1-TRICHLOROETHANE	71-55-6
TRICHLOROETHENE (TRICHLOROETHYLENE)	79-01-6
XYLENE	1330-20-7